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NONLINEAR INSTABILITIES AND LARGE SCALE STRUCTURES
IN MIXING LAYERS j

R. Vaglio Laurin and N. S. Liu

New York University
Department of Applied Science

New York, New York 10003 r

ABSTRACT

The dynamics of the large scale structures/vorticity concentratio, s ob-

served in two-dimensional transitional and turbulent mixing layers are

described in terms of a nonlinear inviscid twýdimenstonal instability

model. According to the model, the formation and repetitive pairing of

the structures reflect a deterministic cyclic mechanism wherein the non-

linear evolution of the finitelamplitude instabilitywhich dominates the

flow at any one stageintrinsically provides first excitation of, and

then energy transfer to, the bound 1/Z subharmonic. The key to iaentify-

ing and modeling the mechanism resides in a realistic description of the con-t current changes in the mean flow and in the structure of the wave motion

during the amplification, saturation and subsequent modulation of the:indl-

vidual nonlinear instability. Models bajed on weakly nonlinear stability

theory prove inadequate to this task. The cause of the failure is identi-

fied, and attendant criteria for estimating the applicability of the theory

to the present as well as other problems are indicated. By contrast, several

salient features of transitional and turbulent mixing layer development are-
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reproduced by the repeated application of a nonlinear modelwhich describes the

F life cycle of the individual structure only in terms of the interactive evolu-

tion of the mean flow and of the wave motions associated with an appropriate

finite amplitude fundamental together with its bbund second harmonic. Some

views on possible external controls influencing the development of the struc-

tures and of the attendant mean flow are inferred on that basis.

1. INTRODUCTION

Recent experiments by Wygnanski et al (1979a) and by Browand and Troutt (1980)

clearly demonstrate that the quasi two dimensional large scale coherent struc-

tures/vorticity concentrations first observed by Brown and Roshko (1974) per-

sist in turbulent mixing layers. The structures, with principal alignment

in the spanwise direction, rapidly approach an asymptotic state where their

mean transversal dimensions as well as spanwise correlation length become

functions only of the local mixing layer thickness 6.. Their mean distance of

travel between pairings then depends only on the ratio (6=/),) = 6M(U1 +

(UI - U2 )-where U1 and U2 denote the velocities of the two streams partaking

in the mixing,,-so that, for a fixed velocity ratio A, the length of the pairing

process also scales with the local thickness . Thus, the repetitiie occur-

rence of a deterministic self-preserving mechanism of intrinsic subharmonic

generation is strongly suggested. The view is supported by the observation

that initially forced mixing layers (Wygnanski et al 1979b, Ho and Huang 1980)

exhibit a rapid return to the behavior of unforced layers following the initial

formation of a single large structure by the simultaneous agglomeration of

Whereas the pairing of structures/vortices is largely responsible for the turbu-

lent mixing layer growth (Winant and Browand 1Q7 4 , Roshko 1976), a

-2-
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quantitative understanding of the attendant dynamics is of distinct interest
from the dual viewpoint of developing flow models based on first principles and

of establishing a rational basis for possible flow (ontrol concepts. Available

models of the pairing process rely on numerical analyses of the unsteady

twodimensional flows which evolve either from an initial parallel "base shear

flow" perturbed by one or more excited etgenmodes of arbitrarily prescribed small

amplitude end relative phase (e.g. Zabusky';and Deem 1971, Patnaik et al 1976),

or from an assembly of discrete line vortices initially arranged in cyclic

arrays with arbitrarily prescribed small lateral displacements and/or offsets

(e.g., Acton 1976), Aref and Siggia 1980) In either case solutions are

obtained subject to boundary conditions which assume periodicity of all flow

variables in the streamwise direction over the length of the computational

domain. Many detailed features experimentally observed during the nonlinear

phases of transition in selected free shear flows have successfully been repro-

duced by these models in conjunction with initial conditions which realistically

reflect those encountered in the experiments. However, the comparisons have

typically been restricted to limited intervals of space in the experiments and

corresponding time in the theoretical predictions. With few exceptions, e.g.,

the calculation reported by Aref and Siggia (1980), the onset of a cyclic self-

preserving process of 1/2 subharmonic generation and amplification, such as

indicated by the observations of coherent structures in mixing layers, has not

been demonstrated analytically. Since the numerical solutions are deterministic

and uniquely defined by the assumed initial conditions and the non controversial

boundary conditions, it is difficult to understand how they could predict self-

preserving vortex pairing over distances which scale with the local layer

-3-
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thickness 6 in unforced mixing layers, and rapidly recover the same self-

presarving process in forced mixing layers, which evolve from obviously differ-

ent initial conditions. Thus, the issue of understanding the dynamics of

the scale change undergone by the structures as they cui.vect downstream is

not fully settled.

The observed rapid recovery of self-preserving vortex pairing over lengths which

scale with the local mixing layer thickness, independently of the initial and

r7: external disturbance spectrum, suggests that the operative mechanism may be

one where the excitation of the 1/2 subharmonic is intrinsic to the non-

linear evolution of the finite amplitude instabilities which control the forma-

tion of the individual structures, and 2) the subsequent amplification of the

subharmonic drains energy from the preexisting instability so that memory of

the specific initial conditions is largely lost after one or a few structure

life cycles. This is the proposition elaborated in this paper. Its demon-

stration clearly depends on a realistic description of the history and struc-

ture of nonlinear wave motions associated with individual finite amplitude

instabilities and on d study of self-induced modulations which result in

interacting paifs of such instabilities having frequency ratios of about 2.

The paper devotes much attention to the analysis of these specific problems.

In order to avoid the large labor and cost entailed by simulations of spa-

tially developing flows, where the streamwise extent of the computational

donain must encompass several vortex pairing lengths, our investigations address

the problem of temporally developing mixing layers, where a computational

domain with streamwise extent restricted to two eddy sizes allows analydis of

the vortex pairing process and assessment of its self preserving nature. In

doing so we recognize that the time evolution of the unsteady shear layer,

-4- J
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statsitically homogeneous in the streamwise direction, and the space evolution

of the laboratory mixing layer, statistically stationary In time, are not

strictly equivalent,since one flow cannot be reduced to the other by a

Galilean transformation. Accordingly, we employ due caution in transposing

results from one situation to the other, especially for what concerns the

interactions among instability pairs, which are known to be dispersive in the

spatial amplification case (Michalke 1965) but non-dispersive in the temporal

amplification ceae (Michalke 1964). The relevance of this caveat to the study

of vortex pairing is evidenced by Petersen's (1978) experimental finding

that".., the first pairing occurred where the mixing layer became sufficiently

thick, owing to nonlinearities and entrainment, that a subharmonic wave had

a phase velocity that matched the convection speed of the vortex ring."

Our inquiries into the structure of the wave motion associated with instabilities

of small :but finite amplitude, growing at a finite rate, largely address the

central tenet of weakly nonlinear theories, viz., that the eigenfunctions

given by linear theory continue to yield an adequate representation of the

motion in the nonlinear case. Since experiments (e.g., Miksad 1972) clearly

show that significant variations of mean flow and maximum shear accompany the

growth of instabilities even at modest amplitudes, we relinquish the classical

asswnption of invariant eigenfunction shape (Stuart 1960) in favor of,the

Meksyn ard Stuart approach (1951), which we rederive in the context of multiple

scales methods (e.g., Nayfeh 1973) together with a self-consistent equation

for the time rate of change of the disturbance energy. We then assess the pre-

dictions of the extended Meksyn and Stuart model by comparing them with Miksad's

"(1972) hot wire measurements in the nonlinear stages of free shear layer transi-

tion as well as with the predictions of a nonlinear model largely patterned

after those of Zabusky and Deem (1971) and Patnaik et al (1976). Unfortunately,

•. -5-
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the assessment proves negative, so that all our subsequent considerations

necessarily rely on the nonlinear model. On the positive side, the reason

for the failure of the Meksyn and Stuart approach is identified, and

attenuant criteria for estimating the applicability of that model in other

nonlinear instability problems are indicated.

Our inquiries into the mechanism of subharmonic generation and amplification

largely stem from the predictions of the nonlinear model for the concurrent

evolutions of the mean flow and of the wave motion! associated with a finite

armplitude Instability undergbing saturation and subsequent self-induced modu-

4 lation of both amplitude and structure. Whereas the frequency of the modula-

tion is close to that of the subharmonic, and the phase velocity of the sub-

harmonic compatible with the prevailing mean flow structure matches the con-

vection speed of the vorticity concentrations generated by the saturated

instability, we find here conditions intrinsically conducive to the initiation

of vortex pairing. A calculation employing the nonlinear model to describe

the development of the unsteady shear layer which evolves from such initial

conditions (including the attendant initial structures of the fundamental and

subharmonic wave motions) allows us then to follow the pairing process to

subharmonic saturation, and to demonstrate the cyclic nature of that process

by the favorable comparison of the mean flow and wave motion prevailing at

the beginning and at the end of the cycle.

In the main body of the paper, the elaboration of our inquiries, and the pre-

sentation of the attendant results, are prefaced by a derivation of the relevant

analytical models in the context of selected experimental data, which provide

guidelines for that derivation (Section 2)) as-well as benchmarks for the

A

-6-
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subsequent assessments (Sections 4 and 5). Numerical procedures, used in the

implementation of the models are presented in Section 3.

r 2. FORMULATION OF THE MODELS

*. Based on the experimental observation (Roshko 1976) that the large organized

structures of mixing layers are not affected by the small scale turbulence

appearing at the higher Reynolds numberswe take the threefold view that:

1) essentially the same cyclic nonlinear mechanism governs the formation and

the pairing of structures throughout the nonlinear transitional and turbulent

regimes; 2) in each cycle the mechanism is only associated with a few discrete

large scale dominant inviscid twodimensional instabillities,whose energy first

grows and then decays along the lines indicated by measurements in transi-

tional flows; 3) the high Reynolds number small scale turbulence, bound to

the large scale structures and generated by a hierarchy of secondary insta-

bilities intrinsic to the flow patterns associated therewith, plays a negli-

gible role in the dynamics of the individual cycle, anJ merely provides the

conduit for cascading the residual energy of large scale instabilities dominant

in previous cycles. In support of these views we subunit that the predominance

of a two-dimensional mechanism is not precluded by the experimental finding

(Browand and Troutt 1980) that the structures are not strictly spanwise and

two-dimensional but, instead, may be skewed and branched. The observed ratio

between the spanwise correlation length of the structures and the local

mixing layer thickness a approaches a lower bound of about 3 for 20% corre-

lation coefficient in flows characterized by a velocity ratio X I 1 and by a suffi-

ciently high Reynolds number (U1-U 2 )6J/. In these flows the streanmwise separa-

tion between structures, as well as their travel distance between pairings,

-7-
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are of the order of 3 to 4 thus, the wavelength characteristic of the ob-

served spanwise skewness is distinctly larger than the lengths characteristic

V of the streamwise instabilities controlling the evolution of the structures.*

Under those conditions only a linear, zero:average, spanwise modulation of

the instabilities and their nonlinear dynamics should accompany,and manifest

itself in,the skewness; accordingly, consideration of the nonlinear processes

in a spanwise-averaged twodimensional approximation is indicated. In that

connection we also remark that a secondary Taylor-type instability--lintrinsic

to. and bou.nd with,the flow pattern relative to the evolving vorticity concen-

trations/vorticity braids characteristic of the structures--.is presumably

responsible for the observed skewness. Pending a quantitative analysis of

this instability and its interactions )with the streamwise instabilities, we

note that the experimentally observed invariant scaling of the spanwise correla-

tion length with the layer thickness 6 indicates synchronous cycles of period

doubling and attendant energy transfer in wavenumber space for the dominant

streamwise and spanwise instabilities. Since period doubling implies at least

a half revolution of fluid elements within the developing subharmonic cat's eye,

and since spanwise and streamwise r.m.s.. velocities are at best comparable, the

shorter wavelength streamwise instabilities necessarily control the process;

the s;oanwise instabilities, paced by the stage of development of the supporting

iarg.e scale structures in streamwise planes, then follow, and just respond to,

that development. Thus, the study of large scale structure dynamics in a two-

dimensional approximation is indicated again. In this approximation we then

approach the specific problems posed in the introduction.

*The measurement! of Wygnanski et al (1979a) indicate much larger
spanwisecorrelation lengths for a velocity ratio A = 0.4.

-8-
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In order to assess what constitutes a realistic description of the history

and structure of nonlinear wave motions associated with individual finite

amplitude instabilities we consider the nonlinear time development of

'A

• ~homogeneous inviscid incompressible two dimensional unstable shear flows. :

S~With reference to cartesian coordinates (x, y), we assume that the initial .

state of motion results from the superposition of a single, small amplitude, j
excited eigenmode, periodic in x and t (with wavenumber a and frequency 0)

"upon a mean (x-averaged) parallel velocity field; that is, at t 0"

:- V(x y, 0) = [U(y,O) + u (x, y, 0), v(x,y,O)] (1)

We describe the time evolution of the flow in terms of the stream function .

.(x,y,t) which must satisfy the vorticity conservation equation

(Vij~ + i(V2-) X (V2V)y
+ " = 0 (2)

subject to the initial conditions (1) and to the boundary conditions

)•: y ÷ _+ :o •x "+ 0(3 .-.i)

if the flow is unbounded, or theiboundary conditions

"" = 0 (3-b)

if the flow is bounded by rigid walls at y = ' Yw"

We seek solutions of equation (2) under the assumption that, for all times

t > Oý the stream function ý may be resolved into a mean flow contribution
'i'(y,t) and a disturbance contribution P(x,y,t), the latt.r possessing

small but finite amplitude characterized by the parameter £<<I, as well

as x-periodicity with wavelength (2IT/c); thus

"".(x,yt) = T(y,t), + £-O(x,y,t) (4)

-9-
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Substitution of(4) into (2) yields

(v2vj +FV2l*)t + C [Ty (V2i•p) (V2Ty
y y

(5)

+- -Cx (V2,) ] - 0
yy Y

and upon x-averaging

(V",y)t + EF <yi(V2 *)x - 4x(v 2 *)y > -0 (6)

which is the equation governing the time evolution of the mean flow. The

equation describing the evolution of the periodic disturbance follows readily

upon subtraction .of (6) from (5), viz.

) (V2 )t + 'Y(v=i)x- (720 07 "

[( ) V -p (7)
y +•[%(V2ý)x X(V2 )y - <%(V2ý)X " x] = °1 '>

Equation (6) indicates that, if the disturbance stream function remains

of order unity under differentiation with respect to the space coordinates,

the mean flow vorticity (v2 i) varies on a slow time scale t=• 2 t. Under these

conditions the solution of (7) may be sought by the method of multiple scales

(.e.g., Nayfeh 1973), and a uniform expansion for the disturbance stream func-

tion in powers of c may be obtained according to

3
q~.Yt = n (XytT) (8)

n= 1

If,in line with our assumptionja single eigenmode is excited at t 0, the

leading term of the solution (8) must have the form

i I(x,y,t,r) = l/2[AI(T) 4 1 (Y,T) e10 + c.c.j (9)

where =e Be0

-10-
-l4
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F Substitution into (7) then shows that the function Cl(y,T) must satisfy the

Rayleigh equation

-) (U=O -0) ,2,•l) - C1U = (10)

with the homogeneous boundary conditions

but that the function A,(T) remains undetetmined at this level of approxima-

tion. The equation governing the presumed slow time evolution of the mean

flow to this leading order is obtained readily from (6) and (9), viz

-- 1/2 =IAzI~ i exp(2 01 dt) Im(t 1Cyy) (12-a)
Tyy

where i denotes the complex conjugate of 41 and Bi= Im(O). If (10) is
used to express * in terms of U and ' (12-a) may be recast din the form

2 I / t 2

UT =-IA 1 •-exP(21 dt) - -r l $ 'UIyy (12-b)
0 .

which clearly is of parabolic type, with space and time dependent effective A
diffusivity, as long as 8 > 0'. Successive differentiations of (12-a,b) 4

with respect to y readily yield expressicns for the slow time variations of

the slope and curvature of the mean velocity profile U(y,T), viz. A
t

U 1... IA12iexp(2 I Odt) Im(1 y =.

t

. IA,,xp(2 0 (dt) 0 IU 0(- (U1412  + UBz tl2 )
.2p, , 01 " yy''1'Y yyy

•, (13)
I -i2cz

2JUa _ -_1 " U Uy U.

Y . -.
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0

ta ' .•:l^iexp (2 0,• dt) 1 1W- $I.-' x
0

(U•:C 1
2yy + 2 Uyyy 1 2 + U+ IC 1) (14)•:.~~ ~~ ~ ~ (Uyyll +z Ii1,÷ y

2c&PW 0l1-7"' [(UUy)y Ur 2Uyy

SClearly equation ý0) and (12) merely reproduce the model of Meksyn and

Stuart (1)51) for the study of finite disturbances. The derivation by the

Smultiple scales method clarifies the crucial underlying assumption of slow

variation of the mean flow as well as provides the framework for a systematic

evaluation of the function AYTr) (see below) without appeal to the heuristic

energy considerations adopted in the original model. The equations (13) and

(14) have no direcL role in the determination of the flow according to the

model. They are presented here because experience with solutions of the

Rayleigh equation (10) indicates that the eigenfunction Cil and the associated

eigenvalue $ are quite sensitive to the curvature U Of the mean velocity
yy

profile. An examination of (14) then provides the key to the a posteriori

assessment of the ecnditions where slow time variation of the mean flot.,,and

attendant description of the disturbance evolution .according to the multiple

scales method,may realistically be assumed. Toward that objective, we need to 3

determine the equations governing the second order o(E2) and third order o(re)

contributions to the solution (8); this is done below.

Elaboration of (7) in the context of the solution (8) shows that the contribu- I

tion *2 to the disturbance stream function must have the form

-12-
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W2 (x,y,t,tr) .2ie + c.(15)

the function 1ý being the solution of the equation

L2((2) = ( -) ((2yyy- 4 2 yy 2IU "

iA

L ~(16)
C1 ;1yyy C ely Clyy)

subject to the boundary conditions ,

Y 0 1 (17)

However, the function AI(T) still remains undetermined. As usual in weakly

nonlinear stability theories, an equatic1 , for A1 (t) is obtained upon consider-

atlon of the contribution o(cs) to the solution (8).Elaboration of*(!) to O(W3)

shows that the" inhomogeneous part'\of the eq'iation for i3 includes, among

others, terms proportional to exp(ie), which are contributed by the derivative

of *1 with respectl to the slow time variable T. Secular terms in the parti.cula-

solution for , and the attendant nonuniformity of the expansion (8), can i

then be avoided only by seeking the particular solution in the form

1 10i*3 (x,y,t,T) = ½ [ Al(T) IA1(T)II' 3 (y,T) e + c.c.] (18)

the function C being the solution of the equation

Lj(•3) = (U x - 1) (C 3yy - 3) - cUyyC3

i i(AI IA I)-(Algl)+ expli(O- 8*)]g (192

where y (

g2 (y't) -[o(2 2 yyy+ ;2y {1yy) - 2 Z ly yy 3 .2

k2 Ti
""aC1(C2yy 12)y]1 - (20-b)

S-13-
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subject to the boundary conditions
•~~ 0 • (21)

S. :Clearly integrability of (19) requires that (

S({AITgl + A, gli - i A11A112'Ap [I(e- e*) 192}•1 dy 0

where ?4(yT) denotes the solution of the equation adjoint to the Rayleigh

Sequation, viz

(u +, R) a + 2 aU • =0 (22)

Accordingly AI(T) must satisfy the ordinary differential equation

hl• + h2 A + h3 AIAI O 1 0 (23)

where

h1 (T) =f gl(y,T) ý1(y,) dy (24-a)
•0

h2 (T) =f [((a/') gl(y..T)] l 1(Yjr) dy (24-b)

h3 (T)=- i exp [i (e- e")]I g2 (y,r) (y,t)dy (24-c)

Equation (23) embodies the extension of the Meksyn and Stuart model yielded

by multiple scales considerations. Interestingly enough, if the T dependence

of the eigenfunction is ignored, i.e., if g1T = h2 = 0 in (24-b), equation (23)

reduces to the classical result of Stuart (1960); thus both the :Meksyn and Stuart

and the Stuart models arise as particular cases in the present context.

The derivative •IT in (24-b) and the coefficient h2 in (23) are retained here; they1

are evaluated Ly noting that, since the etgenfunction r, satisfies the Rayleigh

equation (10), the derivative 1 must satisfy the equation

Lji(4i•) = (Lkx-$) (Clyy - _Q2C ) - cUyy C 1- (25)

(0,- OU) (41yy -•2 ;i) + aUyyt C1

-14-
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readily derivable from (10) upon differentiation with respect to the

slow time T.

Equation (25) is also subject to an integrability condition which yields an

ordinary differential equation for the T dependent eigenvalue O(T), namely

01 I 4'- ()/hllT)] or O(T) -I(0)."f (h4/h 1 ) dT (26)
0h

where ZU +C C 'ýc 'I dy(27)
h4 (T) -c' f1 I lyyyly (C

With this condition, which merely reflects the assor-ation between the

T-dependent etgenvalues 8 ant eigensolutions C1 of equation (10), the formu-

lation of the extended Meks'yn and Stuart model is' completed. Its applica-
tion to determine the evolution of an inviscidly unstable free shear flow

subject to finite amplitude instabilities involves a stepwise advancement of

the solution in time. Given the initial mean velocity field IU(y, W)and the

wavenumber a as well as the initial amplitude AI(0) of the disturbance, the

unit step in that process, between times Oand AT, involves sequentially:

i) the integration of equations (10), (22) and (16) to determine, respectively,

Sthe elgenvalue 0(0) together with the function c1(y.0) and the functions

I l(Y,O), €2 (y,0); ii) the evaluation of UT(y,O), and U (yT 0), I0) from
(12), (14) and (26), respectively, and the consequont determination of

ClT (Y,O) by integration of (25); 11,1) the integration of (23) and (12-b) to ob-

tain A(A-) and U(y,frr), whereupon the next step can be started. Numerical pro-

cedures for these calculatinns are presented in Section 3, and an assessment of

"the attendant predict.ions for the evolvina structure of the wave motion associated
: ~with a finite am~plitude instability is set forth in Section 4.

-15-
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"Whereas measurements, even if detailed and spectrally resolved, do not

usually provide much informatin about those features of nonlinear instability

waves -- viz., transversal variation in phase and associated velocity as

%ý:l'l as vorticity fields -- which are most important for the realistic evalu-

ation and refinement of a theoretical model, the assessment of Section IV

includes a three way comparison among avai'lable experimental data, predictions

of the (weakly nonlinear) extended Meksyn and Stuart model, and predictions

of a strongly nonlinear mnodel. The choice of the nonlinear model is tailored

to both lines of inquiry report,'. i;- the paper, namely: \the identification

of the cyclic subharmonlc gendrationi mechanism in mixing layers and the descrip-

tion of the detailed strurture of the nonlinear wave mctions associated there-

with.* As stated above, we seek to demonstrate that the dynainics of two-

dimensional inviscidly unstable transitional and turbulent shear flows are

dominated by the same determin'ir.ic, self-preserving, repetitive process of

subharmonic generation wherein the nonlinear evolution of an individual

finite-amplitude, two dimensional, streamwise-propagating instability intrin-

sically provides mearn flow growth as well as cyclic excitation of, and sub-

sequent energy transfer to,its own 1/2 subharmonic. In this view .A re-

stricted class of nonlinear instability processes is singled out as govern-

ing the development of turbulent mixing layers. Specifically, the initial

I formation of vorticity concentrations in the transition region is associated
with the self-limiting nonlinear growth of a single dominant inviscid insta-

bility -- the fundamental -- whose selection is governed by a convolution of

the disturbance environment with the receptivity (Tam 1978) and the frequency/

* The failure of the weakly nonlinear model in describing the structure
of individual instabilities (see Section 4) preempts its extension to
the subharmonic generation problem.

• ) - 16-
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amplification rate properties (Mthalke 1964) of the initial -nixing layer.

The evolution of the fundamental is strongly Influenced by the concurrent

dis 4 ortion of the mean flow, but is largely unaffected by the concurrent

excitation of harmonics (Zabusky and Deem 1971). Upon saturation the

fundamental undergoes a self-induced modulation (the vortex nmutation ob-

served by Zabusky and Deem 1971, Patiaik et al 1976, Miura and 5 to 1978),

which affects the amplitude and the structure of the wave motion, as -.All

as the distortion of the mean flow. As we shall demonstrate in section 5, the

frequency of this modulation is nearly 1/2 that of the saturated fundamental,

while the concurrent mean flow distortion is such thut the subharmonic fre-

quency closely approaches t:,ose of the maximum amplification rate spatial and

temporal instabilities for the prevailing mean flow. Since the phase veloci-

ties of these instabilities and of the fundamental are then essentially the

same., 1/2 subharmonic excitation, with well defined initial amplitude as well

as structure of the attendant wave motion, ensues from the modulation of the

fukidamental. The intrinsically excited subharmonic then amplifies,, draining

energy from the fundamental as well as from further distortion of the mean

flow. However, its growth is again self-limiting and such that, at satura-

tion, th'!, original fundamental becomes nearly spent, while the structures of

the mean flow and of the subharmonic wave motion reproduce, except for a doub-

k ling of all length scales, the structures that prevailed at the earlier time

of fundamental saturation. A self-preserving process of cyclic nonlinear

subharmonic generation and mean flow development follows necessarily.

Whereas only two waves (a fundamental and its second harmonic interacting with

each other as well as with the mean flow) are active at any stage of the non_

lincnar wave cycle postulated above, our nonlinear model seeks solutions of the

-17-
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equations (6) and (7) under the assumption that the perturbation stream

function * may be described at all times by a Fourier series in x truncated

at the second term, viz
2 2 ax (28)

,,(x,yt) - 1/2t1 *n (Yst)elnx + c.c. (28

A
With this assumption the modal structure of the evolving flow is clearly

manifested at all times, and the complexity as well as cost of the numerical

integrations are considerably reduced. In its support we note that the numer-

irr.al results of Miura and Sato (1978), who adopted the Fourier series approxi-

mation, and those of Zabusky and Deem (1971), who directly integrated the

time-dependent incompressible Navier-Stokes efiuations, exhibit qualita-

tively identical saturation and post-saturation behaviors for finite amplitude

instabilities in free shear flows. Thus, the departure of finite amplitude

instabilities from an initially sinusoidal spatial shape (Patnaik et al 1976)

seemingly plays a secondary role in their development. However, further

scrutiny may be in order as to the influ,.nce af that de.parture on the onset

arnd evolution of small scale secondary instabilities -- e.g., those respon-

sible for the skewness and apparent branching of the mixing layer struc-

tures -- which are sensitive to the details of the flow pattern relative to

those very struct",ies.

Substitution of the assumed form of solution (28) into (6) and (7) readilyr yields the system of coupled nonlinear partial differential equations which

govern the concurrent time evolution of the mean flow and the selected two

dimensional disturbance modes, namely

Ut =E2j lyiy-* yy + 2(ý2 *yy - * 2yy)] (29-a)

(4

-18-
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'I~DLlL 4 2
$h Y~~y +' (29-b)

Iyy 2)

- 42 ( - 2 el(yy

i• €~~~~2y (ýJ!YY- m)" 2 ýJy(ýZy - 4 0ýs2)] 3 m•

i[(a/at) - 2UVo (42yy " 4 2) + 2mUyy f2

y '( (29-)

-E -- [ 1(01.yy A40 %4y 'i1yy M2*Q*1)] i
f to be integrated numerically subject to prescribed initial conditions

U-(y,O), , l(yO), 2 (y,0) and to '.he boundary conditions

y + U(y,t) U(y,O) (30)

1(y.t) 0 y2 (yt) 0

Procedures for this numerical integration are presented in the following

section, and attendant results, relevant to our inquiries, are reported

and discussed in Sections 4 and 5.

-19-
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3. NUMERICAL PROCEDURES

As pointed out in Section 2, the unit problem of determining the evolution

[ .. of the motion associated with a.nonlinear instability over a time interval AT

according to the extended Meksyn and Stuart model involves the sequential inte-

gration of equations (10), (22), (16), (25), (23) and (12-b). The integration•

of equation (10) to determine C;(y,T) poses a classical etgenvalue problem,

which is solved by iteration. Given a trial elgenvalue O(T), two linearly

(2)independent solutions C1 and C, satisfying the asymptotic behavior

i• 1() )(T) exp (-my) for y - w, are determinedb.y.numerical integration

using a variable order Adams predictor-corrector method to march from large

ytoward y .0,0 where the condition [Re(c ( " y) ]I [Im(¢ 1))/Im(c

Sis to be satisfied. The value of P Is incremented using a Newton-Raphson

scheme, and the numerical integrations are repeated, until the condition on

y 0 is satisfied. The final solutions 1( are linearly combined so that

Re [rly(O.T)] J Im [.1(OT)] k 0, and then normalized so that Re [Cl(3, T)] 1 -

SExactly the same procedure is hen followed to determine Cl(y-¶) by numerical

integration of (22); however, no iteration in 0 is required because (22)

is adjoint to (10). The determination of C2 (y r) by integration of the

-nonhomogeneous equation (16) subject to the homogeneous boundary conditions

(17) is uniqueiand reducible to the evaluation of the particular integral,

"because no complementary functions of (16) exiht which satisfy (17). Two

particular integrals r2 () and C2(2), satisfying the asymptotic behavior

.2M-1. C2 0) exp(-2my) for y ÷ •, are first determined by numerical inte-

gration using the af. renotedAdams method to march from large y to y = 0; the

final solution is then obtained by the linear combination C2 D2 2 (1) +

(I - D2 ) ,2 , which satisfies the conditions Re[C2y(O.')] = Im[{ 2 (O,t)] 0

-20-
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provided

)+ (C[(' -* (22) (2(1)) 0 ()

The integration of (25)t subject to the boundary conditions CJT+ 0.for .y

and C, 0 for y Gs uis reduced to the evaluation of quadratures by-the
substitution

C1, (y,T) C (Y.')InT(~) dy.O Y

which transforms (25) into the equation

T~y+ 2C,- Cl Vij f (y.T)

with

f (y.-r) -.(Um~ -0) (CaU~ (U Q-00) (CC

The solution is

nl(1.Tf I f dy

Upon this determination of rC1,(y,tr) the amplitude function A ( &c) is

calculated from (23) and, finally. the mean Velocity U(y,T + A-t) is obtained

by numerical solution of the nonlinear parabolic equation (12-b). In that

connection a standard, stable, implicit., second order accurate scheme,

where time and space derivatives are approximated by centered differences,

is used to convert (12-b) into a system of simultaneous linear equations

for the unknowns wA 1
=(U +1-U) Ut+A)-I!(l where

3j j 3
j=1,2... N denotes the general y - mesh point. When the boundary conditions

are taken into account, the system takes tridiagonal form amenable to rapid

direct solution. That completes the advancement of the weakly nonlinear,
extended Meks~yn and Stuart solution by a unit time step.

-21-
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Passing to the nonlinear model described at the end of Section 2, the unit

problem of determining the interactive evolution over a time interval At of

the mean flow and the wave motions associated with a nonlinear instability

as well as its bound second harmonic involves the simultaneous integration

if equations (29-a,bc), In that connection, an implicity, second order

iL .. ccurate scheme, where-the time and space derivatives are approximated by

differences, is used to convert (29-a,b,c) into a system of simul-

taneous linear equations

An n+1 n n+1  Cn+1 nnn+1 + n f"• nA j j 1 -2 + -i j DEj j j2 f. (31)
j-1~~n+ n l 15

where j 1,2... N,0+1 denotes the vector with components (U0+- U0,

n+1 n n+1 n.) to be determined at the general y-mesh point j, and
n throughn

the coefficients A0 Ei are 5x5 matrices. When the boundary conditions

v •i1n 0  are taken into account, the system of equations (31)

takes block pentadiagonal form and thus, becomes amenable to direct solution.

lhe algorithm remains quite stable when the time step At is chosen consistent

with the conditioni

n yn in +210 In)] y 1
I C j 2j y

where

r descrbes the ratio b n102 X- n21 y aI_]

'~ ~yij+ e[Iijyyy- at0ylj +'yyy 2y

I
:I

approximately describes the ratio between the x- and y-derivatives of the

vorticity at the ith mesh point and time t.

-22-
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4. EVOLVING STRUCTURE OF NONLINEAR UNSTABLE WAVE MOTIONS

We consider the evolution of a temporally developing shear layer. The initial

state of motion is characterized, in dimensionless variables, by the mean

velocity U(y,O) = tanh 2y, upon which the velocity and vorticity fields atten-

dant to the nearly most unstable eigenmode a= 0.8892, B(O) = 0 + 0.3784 1 are

superposed with s= 0.10 and AI(0) = 0.10. Two rigid plates located at y =3.875

are assumed to bound the flowand solutions are determined subject to the atten-

dant boundary conditions.

Analysis of the flow development according to the extended, weakly nonlinear,

Meksyn and Stuart model ykie.]dsthe suspicious result that,as time prigresses, Oi

decreases but A1 increases (Figure 1) to such an extenti that the amplitude
.,t

a(t) = eAl(r) exp (I Sidt) of the perturbation stream function on the axis y = d
o 2

distinctly exceeds the linear prediction eAI(O) exp (Oi(O)t) when a(t) >Oi(0)

(Figure 2). Whereas this prediction differs from that of the nonlinear model

(Figure 2), as well as from the trends suggested by measurements in transi-

tional mixing layers forced at the most unstable frequency (Figure 3), a

failure of the Meksyn and Stuart approach is indicated. A little diagnostics

readily locates the source of the difficulty in the assumption of slow time

variation: even at the initial time the derivative i•yy 21) Is of

order unity, much larger than '4T(Figure 4).

The trend of (Clyy _ a 24-i.)T versus.y shown in Figure 4 further suggests that

the problem stems from an inadequate description of the vorticity transports

in the cat's eye of $he evolving wave around the critical layer y = 0. In
S~t

that region, having time dependent lateral extent 6(t) -[.AI(r) exp(f sidt)/
0

"U (O,-r)]1/2 = [a(t)/Uy(O,-)] 1/2 the mean velocity U as well as the curvature
y y

-23-
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of the mean velocity profile U are 0(6); however, by virtue of (12-b) and

yyyF' (14), the time rates of change of those quantities when cLLy (O,T•)6(t)•B1 (T)

become respectively, i01 Ut 2 o(06 ) and I' Vyyt= o(6). Under those conditions

the curvature Uyy, which has a profound influence on the shape of the eigen-

function ,s exhibits in the critical layer a normalized rate of change

(OiUyy) "uyyt = o(1) comparable to that of the disturbance vorticity, viz

S[i(clyy - al2I) 1- (41yy - A 24l)t = 6(1." As a consequence, the assumption

that the structures of the mean flow and of the vorticity field associated with

the instability vary on a slow time scale collapses, and the weakly nonlinear

model fails to describe the flow realistically. The extent of such failure

is vividly demonstrated in Figure 5, where the structures of the wave motion

predicted by the extended Meksyn and Stuart model and by the nonlinear model

for t = 9.82,a(t). = .285,0(T) = .1767 d.e compared with each ither as well as

with the structure prevailing at t = 0. Even greater divergences arise in a

comparison between the growth rates and the structures of the wave motion

oredicted by the two models for the second harmonic. i.e.. the normalized

C2 R t )J and its derivatives vis a vis the normalized

02(yt)/Re[02(Ot)] and its derivatives. Thus, reliance on the nonlinear

model is indicated, and justified below, for the problem on hand. A

The evolving structure of the wave motion which the nonlinear model predicts

for the amplifying instability up to the time of its saturation (t < 13.5

in Figures 2 and 6) compares favorably with experiments on at least two

Ecounts First is the qualitative 1 agreement of the relative growth rate j
trends predicted by the model for the scaled energies

¶ Etn(nc,t) =f 2w E n + n a•t n 2) dytn ny n

-24-
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of the dominant fundamental (n=l) and its second harmonic (n-2) in the time J
developing shear layer identified at the beginning of this section(Figure 6)

vis a vis the relative trends of the energies
r. m.s. (na, x,y) .

E unln'x) Us f dyI;..2 -yw. 2e%(x) A

measured by Miksad (1972) in a space developing transitional mixing layer forced

at the same scaled frequency (Figure 3): in both cases the energy of the har-

monic grows at a rate approximately 1.5 times that of the fundamental, a be-

havior certainly not predicted by weakly nonlinear theories. We postpone analy-

sis of this behavior, anticipated qualitatively by Robinson (1974) and dis-

cussed further below, to elaborate the second count, viz. the quantitative

agreement between -the magnitudes of the energies Et, and Eul which theory and

experiments, respectively, associate with the fundamental at saturation. Upon
4

reference to the scales of the equivalent temporally developing mixing layer,

we set Om(Xo) = 1/4 and UT - 2 in the definition of Eul. We then proceed to

calcul3te the ratio (Etl/Eul) consistent with these values and with the theor-

etically predicted structure of the wave motion at saturation. The resu'•t is

(Etl/Eui) = 3.5, a value nicely recovered upon comparison of Figures 3 and 6.

From figures 3 and 6 we also see that the energies Et2 and Eu2 associated

with the second harmonic compare favorably during the early phases of devel-

opment, but depart from each other as the fundamental approaches saturation.

A spurious double hump arises in the theoretical predictions at that stage.

We discount the significance of the hump feature in ;he assessment of the

nonlinear model on three counts, namely: i) the energy associated with the

harmonic remains small compared to that of the fundamental and exhibits
• , "-25-
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growth/dicay trends apparently controlled by the evolution of the fundamental

interacting with the mean flow (Figure 3); 11) the qualitative agreement be-

tween the results of Zabusky and Deem (1971) and those of Miura and Sato

(1978) confirms the secondary impact of the harmonic upon the saturation and

post-saturation evolution of the fundamental, i.e., on the processes which

underlie the subharmonic generation mechanism proposed and addressed in this

paper; iii) the double hump feature, which repezte%:iv arises in calculations p

using a truncated Fourier series representation of nonlinear wave motions

approaching saturation (see sectiorn 5), is eliminated in unsteady twodimen-

Fi sional flow simulations, which do not introduce the truncation approximation

(see Zabusky and Deem 1971). Thus, truncation and the attendant neglect oV

the higher harmonics are responsible for the observed divergence between

the energies Et2 ane Eu2 ; however, the approximation does not obscure the

essential aspects of nonlinear instability evolution evidenced by the calcu-

lations.and indirectly confirmed by the experiments as discussed below.

The prime aspect of finite amplitude instability dynamics resides in the pre-

viously noted,relatively rapidevolution of the curvature U of the mean
.y

velocity profile within the critical layer of lateral extent 6(t). We have

indicated that U undergoes rapid,:change when and if the nonlinear instability
yy

attains a small, but finite, amplitude a(t) such that a Uy(Or) 6(t, > 0i(T);
conversely, the test a U (Q,T) 6(t)<Bi(r) defines the conditions under which

y1
weakly nonlinear models may be emrloyed to realistically describe the structure j
of the unstable wave motion. Beyond that threshold equations (13) and (14) show

S., that the overall flow evolution becomes characterized by a time rate of change

of mean flow vorticity within the critical layer Oi-*Uyt = o(61) = oCa(t) )

comparable to that of the disturbance amplitude 0i' (da/dt) = a(t), but a

time rate of change of the y-derivative of mean flow vorticity B U 0o()

, -- 26-
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larger than either of those two within the critical 1cyar. Clearly, the

total vorticity V2i in that layer is then describr.d by

v*Vlxy,t) " Uy(OO) + a(t) Ot(xYt) (32)

where 11 denotes function which is of order unit'y together with its

Y-derivative with respect to the stretched coordinate

Y ( [U (ot)/a(t)]1 2  y ( Cy/6) €•3)
y

across the critical layer centered at y 0 0. If the considered instability,

characterized by

EV(xy,t) I a(t) [coscx + o(6)]

in the neighborhood of y = 0, dominates the disturbance field, the velocities

within the cri'tical layer Y = o(I) are to leading order

u y(O,t) -Ya (34-a)

v a(t)asincix (34-b)

Conservation of vorticity then requires that the function Qi defined by (32)

satisfy the equation

UiT + Y ic + sin fl.Y + [ - (I +iy 0 (35)

in "boundary layer" coordinates (E,Y,T) defined by

Ocx, Y =y/6), dT = (ac/6)dt (36)

the quantities

1/2 ilau(0,,)6]- (37-a)
[d log a (T)/dT] - [01 2a(T) U (OT)] -y12 = 1 [cUy(OT)6], 3

S,/ 
;37-b)

1 .2 (T) = - [d log Uy(OT)/dT] / -

being of comparable magnitude < 1 under the considered conditions (Oi/6)<1.

-27-
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Inspection of (35) readily suggests that, due to the vorticity transport

sint Qliy, the form of its solution, periodic in 4 over the wavelength 2H of a

dominant monochromatic input disturbance, is necessarily

i 9ni(EY,T) =90)(YT) + 1/2[ E $%in (Y,T)tn +e.c. (38)

h-1

even though Qi(n) (Y,O) 0 'for n ;0 2. Thus, harmonics are forced by the

noted transport within the critical layer. Substitution of (38) into (35)9.]

and inspection of the attendant equatiLns for the functions ai(n) (Y,T),

readily show that the forced vorticities a(T) 01 (n) (YT), n ;0 2, become of

order a(T) after time intervals T = o(1) and, by that process, harmonic pertur-

bation velocities of order a 3 /2 (T) are generated at the edges of the critical

layer. Accordingly, harmonics observed in experiments and determined in

nonlinear calculations should exhibit amplification rates approximately 1.5

times as large as that of the dominant fundamental. This is, in fact, the

trend evidenced by the results of Figures 3 and 6, and, more generally, by

Miksad's (1972) observation that "the measured growth rates of harmonic modes

range from 1.15 to 1.73 times that of the fundamental" in transitional mixing

layers monochromatically forced at various scaled unstable frequencies. The

scatter of the observed growth rate ratios about the value 1.5 is not sur-

prising because different ihi'stories of the parameters pjI(T) and I12 (T) pertain

to different situations; accordingly, the components il4ný(yT) of the solution

(38) vary frnm case to case and so do the ratios between Dairs of attendant

forced perturbation velocities and ene~rges.

The important role of nonlinear vorticity transports within the critical layer

in determining the behavior of finite amplitude instabilities and associated

harmonics was recognized by Robinson (1974) who, in fact, proposed an asymptotic

-28-
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solution to a reduced form of equation (35). In that context, Robinson

reached several perplexing conclusions, which contrast with experimental

evidence and, thus, warrant specific comment. At issue, are the conclusions

that: 1) the temporal growth rate of instabilities with wavenumber close

to the marginal value 1 fon a tanhy mearr velocity proftlk should b6r ct - - 3(m- 1) instead of ci .'-0.637(a- 1) as predicted by linear theory

and indicated by experiments (Miksad 1972), at least in the early phases 4
of nonlinear amplification; ii) no spatially amplifying solutions should j
exist in the nonlinear range even though data, such as those of Figure 3,

clearly display their presence; iii) the harmonics, forced by the nonlinear

F redistribution of vorticity within the ':ritical layer, should amplify at a

rate exactly 1.5 times as large as that of the dominant fundamentalrather than

the varying, although comparable, rates noted and rationalized above. Rejection

of these conclusions is suggested by the fdllowing critical review of

Robinson's solution.

A change of independent variables from (•, YT) to T 1), where

Y .V2 cos

denotes a scaled stream function in the critical layer, reduces (35) to

the equationf P2 yP
OIT Y+[ + a - 1+ - )-i. l = 0 (39-a)

Y22

.•.• In turn (39-a) reduces to the equation (4.28) of Robinson, namely

Yfli+IAl ( - i ) - 0 (39-b

under the assumptions/approximations that

=1, U -, 1, U2(T) = •iT (',),T) = 0

-29-
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F -1/
whereupon the parameter )1 A c1A"/2 in his notation. Robinson determined

an asymptotic solution to the reduced equation (39-b) for )A << 1 subject to

the boundary conditions that, as t .. , the vorticity ni matches a time

invariant mean vorticity distribution upon which is superposed the vorticity

of a linear instability having a time invariant wave motion as well as a

time invariant amplification rate B1. Clearly these boundary conditions do

not deocribe the actual state of affairs for even the weakly nonlinear Meksyn

and Stuart model predicts that neither the mean flow vorticity (Figure 7) nor

the structure (Figure 5) and amplification rate (Figures 1 and 2) of the un-

stable wave motion remain time invariant outside the critical layer. In fact,

Robinson's results contradict the assumed asymptotic behavior for they reveal

a velocity jump of order a 3, 2 (T) across the critical layer, a jump which is

assumed to be absorbed by the unspecified, and unfortunately neglected,

"(a) spreading or contraction of the basic flow, (b) similar spreading or con-

traction of the fundamental disturbance," as well as by the introduction of

all higher-harminics outside the critical layer.

The inadequate boundary conditions lead to an asymptotic solution for fl (9,YT)

which, according to Robinson's equation (4.48), is completely defined by the

instantaneous value of the parameter vI(T), independent of initial conditions

and/or previous evolution of the disturbance. Whereas this behavior is incom-

patible with the indications of either nonlinear models or experiments -- which

unequivocally show an influence of prior history upon the evolving structure of

nonlinear unstable wave motions -- the particular nature of Robinson's solution,

as well as the resolution of the perplexing conclusions it leads to, become

apparent, In connection with the conclusion I) we note that the redistribution

of vorticity within the critical layer of an evolving nonlinear instability must

- -30-0-
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be determined by solving equation (35), where the time derivative 0tT is re-
tained, and not the Robinson's equation [(30-b) in this paper). where CAis

neglected. Retention of the time derivative allows the structure as well as

the amplification rate of a nonlinear instability with initially small ampli-

tude at first to follow, and then to depart from, the predictions of linear

theory. In connection with the conclusion ii) we note that the strong inter-

action between, and the concurrent evolution of, the mean flow and the wave

motion structures require that a realistic description of the spatially devel-

oping twodimensional mean flow be recognized and inclu.dd in the derivation of

the vorticity conservation equation within the critical layer of spatially

amplifying nonlinear instabilities. Solutions exhibiting spatial amplification,

fixed temporal frequency, but gradually varying wavelength, may be gleaned,

albeit laboriously, for such an equation -- but not for equation (35), which

is predicated on the assumption of streamwise homogeneous mean flow. Finally,

in connection with the conclusion iii) we suggest that Robinson's prediction

of a fixed value for the growth rate ratios of the harmonics stems from the local

similarity character of his solution, only dependent on the instantaneous

value of the parameter iIt. Experimentally observed growth rate ratios scatter

around that value because the actual harmonic forcing process, described in a

previous paragraph, does not ohey local similarity.

Aside from the controversial conclusions discussed above, the crucial short-

coming of Robinson's model resides in the poor comparison between its predic-

tions and those of nonlinear models for the vorticity distributions associated

V with nonlinear instabilities undergoing saturation and subsequent modulation.,

Due to the unique dependence of Robinson's solution upon the parameter pA

the comparison becomes especially strained at those post-saturation stages in

-1
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the actual modulational evolution of the instability where p, has the same

modulus, but opposite sign (e.g. to 19.15 vis a vis t a 25.7 in Figure 2);

as a consequence, the modulation itself is not predicted. Whereas that pro-

cess is central to the cyclic mechanism of subharmonic generation and vortex

pairing proposed in this paper, solutions of equation (35), subject to appro-

priate time dependent boundary conditions, are prerequisite to a realistic

description of the vorticity redistribution within the critical layer of a

nonlinear instability. Unfortunately, such solutions are necessarily numerical

and rather laborious, as they require the parallel consistent determination

of the matching, slowly varying, outer flow. Unified numerical analysis of

the critical layer and the outer flow by a fully nonlinear model proves more

economical in practice and, therefore, is adopted here. That consideration

notwithstanding, the inner/outer layer view of nonlinear instabilities is use-

ful in that it exhibits the vorticity redistribution mechanism operative within

the critical layer as well as the limiting/dominant influence of that process

upon the growth of the instability and the forcing of the harmonics.

The conclusion, repeatedly suggested above,that only nonlinear models -- which do

not assume either local similarity or self-preservation of the wave motion

structure -- realistically describe the evolution of nonlinear instabilities,

is also supported by an examination of the approximate model suggested, but not

applied, by Miura and Sato (1978). This model assumes that the evolvity struc-

"ture of a temporal instability having wavenumber a may be approximated by

(see Equations (3.11) and (3.13) of Miura and Sato 1978)

e 1(Y,t)= 2A(t) f(y) exp [ie(t) g(y)] (40)

-32-
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and that the attendant harmonics may be neglected. Substitution of (40) into

(29-a,b) then yields
kt

U(y,t) a U(yO) + 2a(flg")",/ Aledt
0

(see equations (3.20) of Miura and Sato 1978) as well as two nonlinear ordinary

differential equations for A(t) and 0(t), which follow upon formal integration

of the real and imaginary parts of (29-b) over the width of the flow (see

equations (3.14) and (3.17) of Miura and Sato 1978). The stipulation (40)

clearly implies that the wave motion structure retains invariant spatial depend- J

ences f(y) and 9(y) for the amplitude and phase functions, respectively. The A

results of Figure 5a support this approximation for times t < 13.5, prior to

saturation; and, in fact, an integration of the equations for A(t) andO (t) --

with coefficients based on functions f(y) and g(y) determined by the elgen-

mode structure at t = 0 -- yields reasonable predictions for the presatura-

tion behavior (Figure 2), as well as the saturation time and amplitude, of

the test case instability repeatedly discussed in this section. Unfortu-

nately,as shown in the next section, the assumption of invariant spatial depend- I

ences, collapses at later times. As a consequence, our solutions, employing

the approximate equations derived from (40), fail to reproduce the postsatura-

tion. oscillations in wave amplitude and structure, which Miura and Sato

claimed to extract, but did not calculate, from their approximate model. Our

central interest in those oscillations, vividly displayed by Miura and Sato's

own solution of equations (29-a,b) as well as by more elaborate models (e.g.,

Zabusky and Deem 1971, Patnaik et al 1976), motivates our complete reliance

on the nonlinear model for the following study of the vortex pairing mechanism.

-33--
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6. NONLINEAR MECHANISM OF SUBHARMONIC EXCITATION AND AMPLIFICATION

As noted in previous sections of the paper, measurements of time-averaged

properties as well as fluctuation spectra in forced and unforced, transi-
zional and turbulent, statistically stationary, spatially developing mixing

layers indicate that, at least for those situations where the forcing fre-
quency is smaller than the most unstable frequency at the initial station,

the specific spectrum of disturbances initially coupled to the flow has a

vanishing influence on the development of the flow downstream of the station

where two or more vortices first agglomerate (Wygnanski et al 1979b, Ho and

Huang 1980). Following that event, the spatial growth rate of the forced

mixing layer thicKness becomes essentially the same as that of the unforced
layer characterized by the same velocity ratio X= (U1 - U2)/(U1 + U2). The

finding is significant in that it associates a specific physical event -- one

ore more agglomerations -- with the traditional observation that, following

some initial relaxation distance, unforced mixing layers tend to grow at a con-

stant rate, which depends on the velocity ratio ), but is insensitive to

the specific initial conditions, transition tripping device and environment of

small amplitude random external disturbances encountered in any one experiment.

Whereas the constant growth rate of the self preserving unforced mixing layer is

paced by a cyclic process of vortex pairing over statistically averaged lengths

which scale with the local layer thickness 6, And the velocity ratio X, the

rapid onset of the same dominant process in forced mixing layers strongly sug-

gest that, after the first agglomeration, the history of the large-scale

structures/vortlces becomes governed by a self-reproducing limit cycle of non-

linear instabilities, viz the cycle already described in Section 11 in the

, -34-
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Fk course of introducing and Justifying the nonlinear model used in the present

paper. The key features of the cycle, which we seek to analyze and demonstrate

r here, are: iV the self-Induced modulation of the nonlinear instability

responsible for an agglomeration of vortices in the mixing layer combines

with the concurrent distortion of the mean flow to provide intrinsic excita-

[ ; tion of subharmonlc, spatially amplifying. instabilities having about half

the frequency of, but nearly the same phase velocity as,the self-modulating

wave, hereafter identified as the fundamental; ii) the initial finite ampli-

tude,phase and structure of the subhanmonic wave motion produced by the

modulation of the fundamental-independent of either local or previous random

external forcing at the appropriate frequency -- are conducive to nonlinear

amplification of the subharmonic, which draws energy from the fundamental as

well as from the mean flow; iii) because of the specific phase relationship

between the fundamental and the amplifying subharmonic, pairs of vortices, pre-

viously generated by the fundamental, merge with the consequence that the funda-

mental becomes essentially extinct, while the subharmonic becomes dominant;

iv) due to this predominance and to the self-limiting nature of the subharmonic

growth -- necessarily bounded by the finite amount of vorticity available to

the wave within its fixed wavelength -- specific structures of the mean flow

and of the wave motion evolve at subharmonic saturation, viz structures which,

are conducive to the self-preserving repetition of the instability cycle because

they reproduce, except for a doubling of the length scales, the state of
motion prevailing at the earlier time of fundamental saturation.

k

Representative time dependent structures of the mean flow and of the wave motion,

which evolve upon saturation of a dominant finite amplitude instability, are

illustrated in Figures 2, 6, 8 and 9, which display the long time evolution

-35- :
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(t > 13.5) of the specific, temporally developing,shear layer discussed in

Section 4, viz the flow, bounded by rigid plates at yw = + 3.875, which

evolves from the initial mean velocity field U(y,O) = tanh2y and the super-

posed unstable etgenmode with • = 0.8892, 0(0) 0 + -. 37841, e 0.1,

[J(0,0) = 0.1, under the assumption thdt the motion remains at all times

spatially pcriodic with wavelength (21t/c). Clearly the vorticity distribu-

tion achieved at the time When the instability first saturates is not in

dynamic equilibrium for the mean as well..as' the wave motions undergo subse-

quent structure/amplitude modulations with period Tmu 17, about 2.4 times

as long as the period Tft7.06 of thc- considered instability propagating

with phase veloc 4ty c = 1 in the mean flow of initial velocity profile

U(y,O) = (1 + tanh2y). Although periodic, the noted modulations are not

strictly sinusoidal: for example, Figure 2 shows that the stationary value
/

of the y-derivative of the phase function on the axis y =0

(iy(Olt) = {(I/ay) tan-(-m[/l(yt)]IRe[ 1(yt)])}y0

occurring at t 19.15 precedes the zero of the same function (and the concur-

rent minimum of the disturbance energy) occurring at t--22 by a time interval

At -- 2.85, /which corresponds to a period Tmn, 11.4. Thus, the modulation

encompasses a band of frequencies centered around 4H /(Tmu + Tml) = 21/T

where Tma 14.2. Since the period Tma 2 Tf almost exactly, the frequency

spectrum of the self-modulating wave motion in the flow characterized by the

initial mean velocity iU(y,O)\= (1 + tanh2y) would then exhibit - in additon

to discrete peaks at the frequencies(2n1I/Tf) o' the dominant wave (n = 1)

and its hairmonics (n> 1) - a band of width ± 0.2 (IVTf) centered at the

frequency (I/Tf) of the 1/2 subharmonic. Interestingly enough, the excitation ]
of just such a frequency band is displayed by the spectral measurements made

-36- J

i ' -..... .. ... " . . . " " , -" . --
-4a .. . ... .~ -. . , . • . . - : .



NYU/DAS. 81-06

L downstream of the station where the fundamental saturates in a transitional mixing

layer forced at the most unstable frequency (see Mlksad 1972, Figure 8, x >-11.5)

Since an approximate doubling of the wavelength relative to that of the funda-

mental is inherent to the subharmonics observed in the experiments, but not to

the modulation of the time-developing shear layer considered in the calculations,

some reflection on the stipulated equivalence between temporally and spatially

developing flows is in order.

For simplicity of discussion, the relatively narrow band of modulation frequencies

exhibited in Figures 2, 6, 8 and 9 is compressed into the central 1/2 subharmonic
with strictly trigonometric time dependence. Accordingly, the structure of

the temporally developing flow at times •" - (t - ts) ' 0 .(where t5 - 13.5 corre-

sponds to saturation of the fundamental) is approximated by

U(y,t) =U(o)(y) + e[U(1)(y) eil/ + c.c.] (41-a)

C. (yt) ei(x iolx& :
•, - ixlcz(o ) irrt/ (41-b)

Yt) ei f + c.c.]}x 1-b

)(y) + iT O)(y) +[51( ) (y) ei'• t f c.c.] + i s ic x-l

the complex functions/quantities u(m)(y), *1 (m), 1c(m) (y). jsW) (y), m o01i" being defined by

;' ~m () (2m f)I f U~y,t) d"(42-a)

U(M) 2Tf £imr/Tf
0

S-37-
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(in) 2T imrrt/T

(2Tff f *~Ot f dt (42-b)
0

(in - 2Tf
)( (2Tf f Re[Tj(y'q))e1It/f 6~ (42-c)

*(2Tf f I M fr (42-d)t/T
Ois o

Calculations, as well as inspectio~n of Figures 2, 6, 3 and .9,indicate that

iUM1 I = o(1)I.Jý('1) ~o~ ~' h oI~oIad ~1tIoIo

the problem on hand. Thus, if only terms of first order are retained in the

F modulation function/quantities characterized by the superscript m =1, the

stream function (tI descriptive of the time developing flow in the domnain

k Eo may be cast in the form

1y YU~(~
ij (~yt)= v~)+ (xyE)U~J(y) dy + {2

(43),

f f(j) (y)e [atx-(1-j)artl C.C.)
2j=i,2,3

where Sr 2nTf and

1 Y =ýI~ )Y + 1 s Y (44-a)

f(1) (Y) ý (o) (o0)(y) (44-b).

(1 (32 (0 (o) ()()
f1  (Y/)(y 01  1c )(Y) + is() y (44-c)
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This approximate representation, tcgether with the results presented in

Section 4, provides the context for examining the structure of the

laboratory mixing layer and the applicability of the equivalince in the

spatial domains x < x and x > x ,htch, respectively, correspond to

S• • o and t >h O.

I The equivalence of temporally and spatially developing flows presumes that the

approximate relationship between linear temporal and spatial instabilities estab-

Vl ltshed by Gaster (1962) applies as well to the nonlinear flows considered here.

7 Accordingly, the stream function t(x,y,t), which describes the evolving ]

structure of the theoretical, monochromatically forced, unsteady shear layer

viewed in coordinates (x,y) moving at the phase/group velocity cp=Cg=(r/CL)=

of the forcing instability with real wavenumber acand complex frequency (0r+ 113)

j and the stream function (x9-, yx, td,) which describes the structure of the

experimental, statistically stationary, mixing layer viewed in laboratory fixed

coordinates (x.,,y..) and subject to the spatially amplifying instability with

complex wavenumber =r+ii [i + i(0/Br0] real frequency 0and nearly coinci"

dent phase/group velocities c =c C a/aI=I, are related by

t( y,Brt) =-(s)- dy (45)
SY (CIr xj - BttS YL' ar xJ) r ("'1r d

when the zero of t is chosen so that

• A y
ci) ys0 (t) .£ 0)-

-YLW

However, (45) has a limited domain of validity, as discussed below.

A first limitation to the equivalence becomes manifest upon inspection of the

eigenfunctions and eigenvalues calculated in the linear limit: for the initial

mean velocity profile U = (1 + tanh2y) considered here, only spatial and tem-

poral instabilities with dimensionless frequency Re($) > 0.8 approximately

satisfy the conditions on wavenumbers, wave velocities and wave motion ttruc-

tures prerequisite to (45). Spatial instabilities which comply with the

S.-39- 3-
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equivalence conditions at small amplitudes (xl O) continue to do so in the

process of nonlinear growth and saturation at stations <l •.xt~ In that domain

the phase and group velocities of the spatially amplifying waves remain essen-

Titially invariant because the effective wavenumber ae/xp) = [% UY(o.O)/U (xiLSO)1

increases with x2'. The velocity field within the critical layer may then be

approximated by
u2  (/*)+ (xiU ,0y

ui• (11•) U( l,O)yl 1 + UyN ,XlO)Yt&
r y y- 2

v =a(xl)r sin(ar x,,- Ott&) +°(l)

and the vorticity field by

V2fi )( y2' t U (00* ax2 )£ (x'Sv'1 -- 010~)./+ K~ )i(XS) Y9. )

'where =(ar xl -1Ot£ and a~s) denotes a function assumed of order unity4

together with its derivative with respect to the stretched coordinate

Y =[Uy(X y/a(x) = [y2'/6 (x M)]

across the critical layVer. To a first approximation the function gi(s) --

which describes the concurrent nonlinear spatial evolutions of the (time

averaged) mean flow and the wave motion within the critical layer -- satisfies

the equation

:.aiX~s + yllis)n + sinni S1(s) + 111,li(s)-(,l+ U21)Yliys]=0 . (46)1

in boundary layer coordinates (X, Y, n) defined by dX = (cr a/0)dx' ,,

Y- n =( x x- x t.), the quantities

1l(X) = [d log a(X)/dX], P'2 [d log Uy(X,O)/dXJ
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being of comparable magnitude <1 in the domain of nonlinear growth. Equation

(46) is formally identical to the equation (35) previously derived for tempor-

ally developing shear layers, and so are'the attendant initial conditions that

(s)(0, Y,9).be periodic in n as well as the boundary conditions that for

Y. +*=,.the velocities and vorticity associated'with A (S)(X, Y,.,) match

"those associated with a mean flow slowly varyi.ng in X plus a superposed spa-

tially amplifying weakly nonlinear wave having fixed frequency l and wavenumber I
SI '

:, that varies slowly with X.. As a- result R 1 , Y,P) - 1(T,Y,.) for xA< x2,s

< < o, and equivalence is pres#%rved in those domains. -

The equivalence becomes suspect for ' ;Pxs because the structure of the
A

laboratory mixing layer predicted by (43) and (45)

" U(1)(y•). - (tt' )3. eQ(c1r x,.. it)) *
-ye~'t

~ ~'~' 00)' -i02 ( y t e(/)(e

1o.•s strict time periodicity at the forcing frequsicy 1B, while the theoretical
time developing shear layer retains spatial periodicity with the initial

wavenumber •. In addition to the fundamental -- with fixed amplitude, struc-
ture 1)(y.L) and crequency B, -- (47) indicates the presence of the 1/2 and

3/2 harmonics, with structures subject to a. slow time modulation at the '
frequency it /2. Linear analysis readily show s that, for the prevatling mean

velocity profile ((!r) + U(o)(y•)] , the 1/2 harmonic constitutes an admissi-

ble temporal as well as spatial instability with nearly equal phase and group

velocities cp =Cg =(6/ir) practically coincident with those of the
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dominant fundamental, but the 3/2 harmonic does not. The possibility then

arises that a time-modulated, or intermittent, excitation of the 1/2 subhar-

monic instability occur at appropriate downstream stations in a spatially

"developing mixing layer dominated by a finite amplitude large scale instabili-ty

as the counterpart to the temporal modulation of the fundamental wave motion.

I - structure in the equivalent temporally developing shear layer. Should the I

subharmonic instability become amplified, the equivalence between the two

flows would clearly be broken.

Linear analysis fails to indicate whether and when the 1/2 subharmonic is ampli-

fled because the stream function of the associated, slowly rmodulated wave

motion with real part

S(f /2))+2 UMI) dyI]cos (ti - t I) + Im(f 1(1/2}.sin t its-t~s) (48-a)

and Imaginary part
(y

IyCos -R~ - - -2)

Im(fl(1/2)) co ~(t - ts) [Re(fl(l 2)) -U(I) dy~lsin2(t•-t~s) (48-b)

carries little resemblance to that of a linear wave at any time 0 < (tR - tj 5)
9 is

<( 4n/O. This structural difference also prevents the adoption of either Kelly's

(1967) theory or its extensions in terms of weakly nonlinear multiple scale

models of secondary instabilities (e.g., Nayfeh and Bozatli 1979) to determine

the paranvteric amplifier action, if any, of the coexistent nondispersive finite

amplitude fundamental. Seemingly, the only resort then resides in nonlinear

numerical calculations, which in view of the nondispersive nature of the funda-

mental and the subharmonic at the considered stage of flow development, may be

based on the heuristically equivalent, time-developing, nonlinear flow model of

equations (29,a,b,c,).
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Numerical experiments, involving the integration of (29-a,bc) subject to

the distinct sets of initial conditions which accrue when the mean velocity

field and the fundamental wave motion displayed in (47) are combined with the,

subharmonic wave mwotions indicated'by (48-a,b) for disttnct tinlis tI, indicate

that, subject to it variable time delay generally shorter than (2/0), nonlinear

effects cause the subharmonic to undergo a strong nearly exponential amplifi-

cation with characteristic time comparable to (2/0) for those initial conditions

which pertain to times t, in the interval roughly bounded by -(7r/0)<(tj - tgs)

< (7I/).* Since those initial conditions recur with a time period (4w/O)

according to (48-a,b), strong, but intermittent, subharmonic growth is indicated

for the region of the laboratory mixing layer which extends approximately (2y/a,.)

downstream of the station x x where the forcing fundamental saturates. Such

a region of intermittent nonlinear subharmonic excitation/amplification -- inher-

ent to the evolution of the fundamental and independent of external forcing at

the appropriate frequency -- has been observed by Miksad (1972, P. 714) in

transitional mixing layers. Its occurrence and interpretation are quite signifi-

cant in our view of mixing layer dynamics because they provide the first two ele-

ments of the self-reproducing nonlinear cycle of large scale instabilities which

we seek to demonstrate.

'e nonlirear nature of the subharmonic excitation/amplification process requires

that it be analyzed in the context of the concurrent changes in mean flow

and fundamental wave moti'n. The intermittent activity over the noted distance

;trean; of xs admittedly pre.ents the exact simulation of that region of the

*A reexamination of the evolving structure of the fundamental wy motion prior
"to saturation (see Section 4) shows that the stream function i is adequately
described by the approximation (43) for T >-(w/0).
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Slaboratory flow by a single, equivalent, time-developing shear layer having

the streamwise periodic structure attendant to superposed sinusoidal funda-

imental and subharmonic waves. However, intuition as well as data (e3., Figure

3) suggest that only a modest amount of energy accrues to the subharmonic in

the region of intermittent activity. An approximate simulation then seems

plausible, especially if attention is focused on the flow structure which

ultimately evolves. upon finite amplitude grmvth and saturation of the subhar-

monic. In that connection a station xj 0 is chosen within the region in question
tot

downstream of x s; non-intermittent activity is assumed to begin at that sta- A

tion, and effective initial structures are prescribed there for the time-

averaged velocity profile as well as for the fundamental and the subharmonic

wave motions. Given the small energy accrued to the subharmonic, the effective

initial structures may not differ substantively, from those indicated by (47); r
accordingly, a parametric study need only consider moderate variations in the

partition of energy among the modes and in the structure of the subharmonic wave

motion from its time-average during the periods of activity. Limitpd numerical

experiments indicate that such variations have little influence on the ultimate

development of the flow. In the absence of a cogent criterion to guide the

choice, only the representative results of a single approximate simulation are

therefore reportedand discussed below; the pertaining initial conditions are:

i) X~o = X 4s + (r/Ar); (ii) structures of the mean velocity profile and of

the fundamental wave motion as displayed in (47); iii) structure of the sub-

harmonic motion as indicated by (44) fur (tj - t,,s) 0

The structural evolution of the equivalent temporally developing flow, which

ensues upon excitation of the subharmonic, is illustrated in Figures 10, 11 and

12. Inspection of these figures elicits several commerts. Clearly the subhar-

monic amplification and saturation constitute strongly nonlinear processes
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accompanied by large changes in the structures of the mean velocity profile

as well as the fundamental and the subhanmonic wave motions. The salient conse-

quences include: i) the binary merging of the vorticity concentrations generated

by the preexisting fundamental which, in fact, transfers most of its energy to

the subharmonic as the latter approaches saturation (Figure 12); 1i) an increase

in the mean flow vorticity thickness 6 which, at subharmonic saturation, becomes
[ very nearly double that prevailing at fundamental saturation (Figures 8 and 10);

iii) an evolution in the subharmonic wave motion which, consistent with flow self-

preservation, acquires at saturation a structure and an energy which are, respec-

tively, equal and double their counterparts in the fundamental wave motion at its

saturation (Figures 9,11 and 12); iv) a self-induced modulation of the mean and

$ subharmonic wave motions which follows subWrmonic saturation and, consistent i

with the flow structure and the time/length scales attendant to that event, causes

first the intrinsic excitation of a 1/4 subharmonic wave, and then its evolution

with a life cycle dynamically identical to that of the subharmonic. In combi-

P nation these processes complete the demonstration of the proposition that a

single self-reproducing cyclic process of 1/2 subharmonic excitation, amplifi-

cation and quenching controls the evolution of large scale coherent structures I

as well as mean flow in spatially developing mixing layers.

Disagreement between relevant experimental data prevents a definitive quantitative

evaluation of the analytical results for the nonlinear wave cycle. The sub-

harmonic amplification rate displayed in Figure 12 Is measurably larger than

that reported by Miksad (1972)-and reproduced in Figure 3, but agrees nicely

with that observed by Ho and Huang (1980, see Figure 17) in mixing layers

forced at frequencies slightly below that of maximum amplification. The apparent

contradiction may be facility related. Both experiments were carried out in

channels with relatively small cross-sections, viz 12.5 x 13.5 cm for an

-45-



NYU/DAS 81-06

estimated vorticity thickness 6 3 .cm at subharmonlc saturation in Miksad's

case and 10 x 10 cm for 6 1. cm in Ho and Huang's case. As Mlksad points

out, cross-stream boundaries then exert spanwise constraints on the three

dimensional secondary instabilities with large spanwise wavelength (see Browand

and Troutt 1980, Figure 6) which arise in the course of subharmonlc amplifica-

tion, and cause skewing as well as apparent branching of the large scale struc-

I.' :tures (see Miksad 1972 Figure 24 as well as Browand and Troutt 1980). Accord-

ing to Miksad "the onset of spanwiSe activity coincides with a noticeable

decay of fundamental mode energy along the center-plane"; however," u' r.m.s.

wave-front measurements indicate that this may be due to a spanwise redistribu-

tion of energy and not to a transfer of energy to other scales of motion." Thus,

it is possible that the subharmonic amplification rate measured by Miksad in

the center-plane of his facility, with a ratio (d/6 )= 4 between channel width

d and mixing layer thickness 6o. may not represent either the spanwise average

value or the value appropriate to a flow free of lateral constraintsl by
contrast, the rate observed by Ho and Huang with (d/6 ) 8 may not be subject to

such adverse limitations. Admittedly this is only a conjecture. However, a

stronger argument maj be made in support of the calculated results and Ho and

Huang's measurements by examing the average spatial growth rate of the mixing

layer over the interval between fundamental and subharmonic saturation. For

the mean velocity profiles shown in Figure 10 and the considered velocity ratio

X =1 we obtain

(dO/ dx) =(dO/dt) =(1/4)(d6 /dt) .03

a result which scales in the lower range of the experimental observations reported
by Brown and Roshko (1974) and Browand and Latigo (1979), if the growth rate of

the integral (momentum) thickness B is assumed to depend linearly on X. Thus,the
the most commonly measured gross feature of mixing layer development is fairly

I.(

reproduced by the model and calculation presented here.
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6. DISCUSSION

The results of section 5 indicate that the growth of spatially developing

turbulent mixing layers is controlled by a self-reproducing deterministic, non-

linear wave mechanism whereby sequentially subharmonlc, large-scale, finite

amplitude instabilities are caused to follow a well defined excitation/amplil-

fication/quenching life cycle, which renders them sequentially dominant. The

key to the imechanism resides in the strongly nonlinear nature of the inter-

actions lbetween, and the concurrent structural evolutions of, the mean flow

and the locally dominant wave motions. The salient consequences of those

nonlinearities include: i) the achievement of negligible dispersion between

a dominant instability at/near saturation and its 1/2 subharmonic, provided

the frequency of the fundamental fails in a range to be discussed below;

ii) the onset of non-stationary mean and wave motions upon saturation of the

dominant fundamental, and the consequent intermittent excitation of 1/2 and

3/2 harmonic wav- motions having well defined structures; iii) the approximate

doubling of the mean flow thickness and the near complete draining of the

fundamental energy, which accompany the amplification/saturation of the unstable

subharmonic -and permit the self-preserving reproduction of the (subharmonic)

ii
instabi li ty exci tati on/ampl ificati on/quenchi ng processes i n sequen ti al cycles

distinguished only by a sequential doubling of the length of scales involved.

I The deterministic and skeletal nature of the proposed cyclical instability mech-

anism -- ascribing a significant role to a discrete, two frequency, spectrum

of two dimensional waves in each cycle -- has distinct implications with regard

to the dynamics of turbulent mixing layers and their amenability to control.

The quantitative pursuit of these implications is beyond the scope of the pre-

sent paper; however,some relevant qualitative trends may be gleaned from the
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available results. The first comment in this connection concerns the expected

behavior of transitional mixing layers monochromatically forced at unstable

frequencies 0 other than the Om.of maximum amplification considered in our

calculations. Since the growth of any instability is limited by the finite

amount of vorticity available to it within a wavelength, one anticipates that,

in accord with the observations of Miksad\(1972, p. 712), the saturation ampli-

tude of a forced disturbance increase as its frequency decreases. The mean

flow distortion (increase in 68), which accompanies the growth of the instability

and is geared to its saturation amplitude, is also expected to increase as 2

Sthe frequency decreases. As a result, conditions conducive to the excitation

of a 1/2 subharmonic, having nearly the same propagation velocity as the
forcing fundamental, and the attendant initiation of a nonlinear subharmonic
generation cycle,may be anticipated for a finite ranqe of tforcing frequencies

about am The experiments of Ho and Huang confirm this expectation for

(B /2) <0 < om; the range of admissible frequency 1 > remains to be deter-
m M a

mined by either calculation or experiment.

For a specified initial mean flow, forcing at different frequencies in the

aforenoted range results in initial mixing layer responses, hereafter identified

as mode 1, which are qualitatively identical, but quantitatively different

f• because each frequency possesses a specific admittance, amplification rate,

saturation amplitude and rate of energy transfer to its subharmonic. However,

the frequency sensitivity should largely vanish upon the first vortex pairing

because the subharmonic responsible for that event, saturated at a self-limiting

amplitude consistent with its wavelength, combines with the attendant commen-

surate distortion of the mean velocity profile to yield a flow structure which,
i-llin coordinates scaled to the local mixing layer thickness, is independent of the
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initial conditions. If the nonlinear instability cycle proposed here is

operative, the development of the flow, downstream of the station where vortex

pairing first occurs, should then become self-preserving and independent of

the specific transition process, whether forced or natural. This -self-pre- ]
serving behavior, which is the cornerstone of the proposed modelb is manifested -

by the measurements of Ho and Huang (1980) in forced flows, as well as by ýd

Broward and Latigo's (1979) observation that, in naturally developing flows

subject to distinct initial conditions, the mean velocity distributions achieve

an equilibrium shape in coordinates scaled to the local mixing layer thickness

after two vortex pairings, and the distributions of rms longitudinal fluctuations

as well as Reynolds stress do so prior to the third pairing. Consistency with

the proposed mechanism is 'hus indicated, but not conclusive support. Clearly

the suggested predominance of a deterministic two dimensional instability 4
cycle involving a discrete two frequency spectrum must be reconciled with the
experimental evidence that mixing layer turbulence is random, three dimensional

and broad spectrum. This reconciliation is pursued below following some addi-

tional discussion of initial mixing layer responses.

Ho and Huang (1980) point out that the initial response changes at low forcing

frequencies 8 4 (8i/2).* Different modes, designated by n - 2,3,4, arise for

different frequency ranges m/(n+1)'O<Bm/n. Due to the receptivity and ampli-thi

fication characteristics of the flow,the nth harmonic of the forcing frequency

dominates the initial development in mode n. In the higher modes (i.e. n =3,4)

the (n-m)>1 harmonics also appear and initially dominate over the forcing

Attention is here restricted to small amplitude forcing, which has a small
influence on the spatial evolution of the instabilities compared to their
interactions with the mean flow and with each other. The collective inter-
actions, which sometime arise under large amplitude forcing (Ho and Nosseir

F 1981), require separate analysis.
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frequency; however, their energies and amplification rdtes remain distinctly

smaller than those accruing to the nth harmonic. This "response" frequency

then amplifies and saturates along the lines discussed in Section 4, with

little interference by the other instabilities simultaneously present in

the flow; as it so evolves, it generates vorticity concentrations as well

a% mean flow distortions, which tend to eliminate the initial differences be-

tween the phase velocities of the various instabilities.

According to the considerations set forth in a previous paragraph, the flow

distortion attendant to the saturation of the response frequency eliminates

the dispersivity of that wave relative to its 1/2 subharmonic, which coincides

with the forcing frequency in mode 2., Binary vortex merging then ensues in

mode 2, much along the lines repeatedly discussed in this paper, but without

the delay required for intrinsic excitation of the subharmonic, which is now

forced and amplified ab initio. •" the forced subharmonic saturates at its self-

limiting amplitude, conditions conducive to self-preserving development of the

flow are recovered upon the first vortex pairing. The ensuing development

must be the same as that of mixing layers initially responding in mode 1, and

that is the case according to the observations of Ho and Huang (1980). ,

In mode 3 the saturation of the response frequency is also followed by the

"continued growth of its 1/2 subharmonic, forced and amplified ab initio in

the mixing layer. However, that process does not proceed to self-limiting

saturation as in mode 2, because the attendant mean flow distortion eliminates

the dispersivity of the forcing frequency relative to the response frequency

and the 1/2 subnarmonic. A three-wave nonlinear interaction then arises,

which results in the merging of every triad of vortices generated by the

response frequency. Since the rate of energy transfer among the three inter-

acting_\waves.depends upon their phase relationship, the pattern of merging

varies from event to event: in most cases two members of the vortex triad

-50-
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merge first into a new Vortex, which then coalesces with the third member;

occasionally, all three members merge at the same time. In all cases the waves

at the response frequency and its 1/2 subharmonic become largely extinct upon

completion of the merging, while the wave at the forcing frequency becomes

distinctly dominant, reaching saturation at a self-limiting amplitude consistent

with its wavelength. This saturated wave combines with the attendant commen-

F surate distortion of the mean flow to yield a flow structure which, when viewed

in coordinates scaled to the local mixing layer thickness, is largely identi-
cal Ito those encountered at subharmonic saturation in modes 1 and 2. Self-pre-

serving development of the flow is then regained downstream of the station

where the vortex triad coalesces, in agreement with the observations of Ho and

Huang (1980).

The response in mode 4 is qualitatively similar to that in mode 3 to the extent

that saturation of the response frequency is followed first by amplification of

its 1/2 subharmonic and then by a three-wave interaction with the forced 1/4

subharmonic,which ultimately becomes dominant and saturates at its self-limiting

amplitude. Self-preserving development of the flow then ensues downstream of

the station where quadruple vortex coalescence is -completed, again in agreement

with the observations of Ho and Huang (1980). The nonlinear viewpoint and

mechanism advanced here thus allow a unified interpretation and description of

the processes whereby a mixing layer subject to diverse initial conditions and

external forcing relaxes to a self-preserving behavior. The comments below seek J
to ascertain the role of that mechanism in the fully developed turbulent regime.

In a fully developed turbulent flow, the dominant, l4rge scale instabilities

considered here are subject to distinct amplitude and frequency modulations,

induced either by externally imposed disturbances or by secondary three-dimen-

sional instabilities intrinsic to the vorticity patterns which evolve with the
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large scale structures. Given the nonlinear nature of the instability evolution

process, these modulations result in the seemingly random occurrence in time

and space of the major observable events, e.g., vortex pairings. Thus, for

example, in a naturally transitioning mixing layer, where the initial amplitude

[ and frequency of the selected response disturbance are subject to modulation,

the first vortex pairing occurs randomly in time and space mainly because the

strength and separation of the participating vortices vary with the modula- i
tion of the generating disturbance. As a result, the mean vorticity. thickness 60

displays linear growth beginning at/about the station where the random

pairing occurs in the mean.

In a forced mixing layer, where the initial amplitude and frequency of the

response disturbance are determined uniquely, the position of first vortex coa-

lescence (either binary or multiple depending on the response mode) becomes

localized. Up to that position, the thickness 6• grows in the stepwise

fashion predicted, for example, by the strictly twodimensional, deterministic

calculations of Aref and Siggia (1980) and this paper. Beyond that position

however, the thickness 6 grows linearly because secondary instabilities,

intrinsic to the vorticity patterns generated by the first coalescence, modu-

late the amplification of the subharmonic responsible for the second coales-

cence and cause that event to occur randomly in space and time.

Prominent among the modulating disturbances are the secondary threedimensional

instabilities which cause the formation of longitudinal streaks (Miksad 1972,

Brown and Roshko 1974), and the spanwise redistribution of the dominant mode

energy alluded to in Section 5. Their effect is to impart spanwise-variable

rates/stages of evolution/merging upon the vortical structures associated
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with the dominant mode at a ground-fixed observation station. The immediate

consequences are twofold: I) the evolving structures attain spanwise

skewed/branched configurations as observed by Browand and Troutt (1980);

II) sequential structure realizations at a fixed observation station exhibit

jitter in their phase and amplitude/stage of evolution according to some

probability density function (p.d.f,). In the present view the scale relation-

ship, as well as the mode and extent of interaction between the dominant stream-

wise and spanwise instabilities, are deterministic; randomness is relegated

to the spanwise phase exhibited by the latter instability in sequential

realizations of the structures at the observation station. Specifically, the

spanwise instability embodies the selective response of the supporting

vorticity concentration to the random forcing provided by the prevailing

three-dimensional disturbance environment. The receptivity and amplification

characteristics of the vortical structure with respect to spanwise disturbances

act as band pass filters to select the "response". As a result, the wave-

length of the spanwise instability necessarily scales with that of the locally

dominant streamwise mode and with the related local mean vortical thickness

of the mixing layer. Upon selec-ion, the spanwise instability grows to an

amplitude limited by the nonlinear requirement that the ensuing threedimensional

stretching of the supporting vortical structure remain bounded. As a result,

the p.d.f. of the structures observed at a fixed station possesses a well-

defined finite spread; also, the structures persist and cyclically reproduce

themselves with quasi-two dimensional form at large distances downstream.

Finally, if the structure generation mechanism and life cycle are self-pre-

serving as proposed in this paper, so must be their interactions with thej

spanwise instabilities and, therefore, the statistics of structures observed

r.• at differetit 6ownstream stations. The experinental findings that the p.d.f.
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of vortical structure life-Ame in a mixing layer (Roshko 1976) as well as

the spanwise distribution of cross-correlation coefficient (Browand and

Troutt 1980) are in fact self-preserving, support this conclusion. Thus,

deterministic nonlinear mechanisms and bounds appear to control not only

the twodimensional evolution of the structures but also their concurrent 4

seemingly random, finite amplitude, threedimensional modulations and distor-

tions, which are prerequisite to the aforenoted onset of self-preserving

behavior, with linearly growing mean thickness, following the first

coalescence of vortices in forced as well as unforced mixing layers.

A consequence of the interaction between large scale streamwise and span-

wise instabilities, and the attendant jitter of the structures, is the

broadening of the low frequency peak in the spectra of fixed point measure-

ments Ni a turbulent mixing layer. Unfortunately, this broadening does

not necessarily control the shape of the low frequency spectrum. The large

scale nonlinear waves, which dominate the flow according to the present model,

have nonsinusoidal shape (see Section 4) further complicated by the modu-

lations attendant to the jitter. The coherence of such waveforms is eas4 ly

lost in a spectral representation, which disregards phase information and

provides only an averaged linear Fourier decomposition of the signal. For

thesign,a'l shapes on hand the Fourier decomposition typically includes

several artifacts waich further broaden the spectrum (Lake and Yuen 1978).

Thus, the proposed dominant wave model of mixing layer dynamics is not

contradicted by the absence of spectral peaks in the large budy of accepted

measurements within turbulent mixing layers.
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An additional noteworthy aspect of the interaction between the large scale

streamwise and spanwise instabilities in a mixing layer becomes manifest

upon a comparison of the mean thickness growth rates measured in experi-

: ments with those predicted by deterministic, strictly two-dimensional

models, which ignore the spanwise instability (e.g. Aref and Siggia 198U

as well as Section 5 of this paper). Remarkably, theory and observation

are in reasonable agreement, thus indicating a nullaverage effect of the

interaction upon the development !of the flow. Several additional infer-

ences may then be advanced. First of all, the twodimensional models

adequately describe the distribution of Reynolds stress in the flow. Con-

versely, Reynolds stress distributions so predicted provide a first principle

alternative and/or complement to flow analysis by the generally accepted

second order closure models, whose success often depends on the suitable

empirical selection of third order correlation coefficients. Secondly, the

cascade of energy in threedimensional wavenumber space provides an important

contribution to the level and distribution of turbulent kinetic energy in

the flow, but has little influence, either qualitative or quantitative, on

the evolution of the large scale structures and on the distribution of

Reynolds stress. Since the distributions of all second order turbulence

quantities in a mixing layer become self-preserving after the second vortex

pairing (Browand and Latigo 1379) 'the cascade must be intrinsic to, and

bound with, the evolving vorticity patterns of the large scale structures,

and must evolve subject to the same broad constraints previously indicated

* We conjecture that the low frequency and inertial subranges of spectra
become also self preserving after the second vortex pairing.
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for the large scale spanwise instability -- i.e., wave vectors selected

by the receptivity and amplification characteristics of the supporting

advected flow patterns, phase determined case by case by the prevailing

random disturbance environment, amplification limited by nonlinear bounds

on the ensuing distortion of the supporting flow patterns, effect confined

to localized distortions of the dominant carrier waveshape and the asso-
• ciated distributions of fluctuations. The overall energy of the carrier

wave and its evolutionary interaction with the mean flow are then influ-

enced only slightly, and the self-preserving statistics of the cascade

process, as well as its negligible effect upon the dynamics of the large

scale structures and the development of the flow, are rationalized.

The arguments above support the premise of the proposed model that the.large

scale structures and the mean flow of a mixing layer constitute a largely

self-contained nonlinear twodimensional flow system, which evolves by a

self-reproducing deterministic limit cycle. The cycle, although subject

to modulation by intrinsic self-limiting instabilities, becomes rapidly ob-

livious of initial conditions. Control of the flow then seems possible

only by repeated local interference with either the mean flow or the domi-

nant modes associated with the large scale structures. For example, one

anticipates that, in line with the findings of Ho and Huang (1980), the

growth rate of the mean mixing layer thickness at a selected downstream dis-

tance is enhanced by in phase, small amplitude, external, forcing of eitherI the locally dominant wave frequency or its nondispersive fractional subharmonics.

Conversely, one expects that the growth rate is diminished if the frequency
Sof the forcing is preserved, but its phase is reversed. Receptivity consid-

erations together with the proposed model, and/or slight extensions thereof,
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should provide a realistic tool for evaluating the effectiveness of such

control concepts and for designing attendant demonstration experiments.
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;model. 0 0 o,.t.= 17;---, t.-=.22.4; - t = 30.2.
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fundamental (n = 1) and of the subharmonic (n = 1/2), the latter
being excited at t = 17. Nonlinear model.
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